January 7, 2025

Generando (automáticamente) ecosistemas de aprendizaje con ideas ideas navegables y relaciones semánticas. (pensamiento computacional, AI…)

Author: juandon
Go to Source

Juan Domingo Farnos

Necesitamos un “travelling”, una apertura radical del conocimiento hackeándolo a través de la mente humana y de algoritmos en perpetuo estado de beta, siempre des de posiciones OPEN y a través de la búsqueda y del uso de competencias tansmedia por medio de investigaciones abiertas y distribuidas..

Con ello estamos dentro de un “pensamiento calculador” que nos conduce hacia un “utilitarismo” el cual lo conseguimos mediante el análisis producido por algoritmos que nos llevan hacia DATOS bien, estandarizados, bien personalizados, en diferentes terrenos: educación, salud, economía…

Esta realidad múltiple y diversa (inclusiva y disruptiva) no nos llevara a ningún punto en común (convergente), si no todo lo contrario, divergente y por tanto completamente inclusivo.

El pensamiento computacional es un pensamiento humano con la ayuda computacional que nos puede llevar por diferentes camino, bien previstos o no. En principio lo suelen estar, pero debemos estar preparados para que la “maquina” adapte las diferentes interfaces de los usuarios-aprendices, su experiencia, así como el contenido y nos ayude a vivir dentro de esta sociedad inteligente (obviamente con esto podemos entenderla, sin esto es difícil).

Si aprendemos métodos para estudiar y moldear el pensamiento, la memoria y la acción tanto para los humanos como de las computadoras, la educación también te capacita para diseñar la interacción entre las personas y la tecnología.

En Inteligencia Artificial (AI) exploramos el pensamiento informático. En neurociencia, observamos lo que está sucediendo en el cerebro. Cuando conectamos lo que nos sucede con lo que sucede en una computadora, el pensamiento se convierte en un híbrido en el que nuestro pensamiento excede los límites entre psicología, cultura, biología y tecnología.

En mi aprendizaje basado en la actividad, sugiero que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

La tecnología abre nuevas formas radicales de la educación; romper barreras entre disciplinas impulsa nuevos campos creativos de la investigación y la invención; y poniendo el emprendimiento social en el centro de la misión de una universidad asegura pensadores brillantes jóvenes pueden llegar a ser nuestros más poderosos solucionadores de problemas.

A través de una colaboración continua, el intercambio de ideas y una buena dosis de coraje, estamos en el camino correcto para asegurar un cambio duradero en nuestra sociedad y en nuestra educación. Estoy emocionado de ver las ideas como éstas crecen y se transforman el futuro de la educación..

Para todo ello proponemos preguntas como:

     -Cuáles son las dimensiones interculturales clave a considerar en equipos distribuidos?

         -¿Cómo dimensiones culturales y sus diferencias se refieren a las preferencias de los canales de comunicación?

         -¿Cómo afecta el uso de estas herramientas de una cultura a otra y por qué?

          -¿Cuáles son los problemas típicos que surgen cuando los miembros de diferentes culturas tienen que trabajar juntos?

         -¿Qué tipo de herramientas y canales de comunicación deben estar disponibles para colaborar en línea?

La participación en los flujos de conocimiento puede generar nuevas ideas y prácticas y mejorar el rendimiento de una manera que también producen el aprendizaje y nuevas capacidades.

El FLUJO DE CONOCIMIENTOS y de APRENDIZAJES como algo natural en internet y de como de manera SEMÁNTICA,  (Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podéis estar seguros… Juan Domingo Farnós).Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica.

Esto generará automáticamente los ecosistemas de las ideas que serán navegables con todas sus relaciones semánticas. Seremos capaces de comparar diferentes ecosistemas de las ideas de acuerdo a nuestros datos y las diferentes formas de clasificarlos. Seremos capaz de elegir diferentes perspectivas y enfoques…..(personalized learning and Social Learning)

Vamos a ser capaces de analizar y manipular significado, y allí radica la esencia de las ciencias humanas.

“Debemos saber un poco de la historia de la subida de los Sistemas Inteligentes de Tutoría, los problemas con el desarrollo de modelos de expertos, y los enfoques actuales como Knewton y Smart Sparrow. No he tenido la libertad de seguir las últimas novedades tanto como me gustaría, pero Donald dio una gran visión.

Se refirió a los sistemas de estar a punto de los contenidos de análisis automático y el desarrollo de aprendizaje en torno a ella. Mostró un ejemplo, y creó preguntas . También mostró cómo los sistemas pueden adaptarse individualmente al alumno, y discutió cómo podría ser capaz de proporcionar tutoría individual sin muchas limitaciones de los profesores (cognitiva sesgo, fatiga), y no sólo se puede personalizar, pero sí mejorar y escalar!

Uno de los problemas que encontró a corto plazo era que la pregunta autogenerado fuera sobre el conocimiento y no sobre habilidades. Si bien estoy de acuerdo que el conocimiento que se necesita , así como su aplicación, creo que centrarse en este último primero es el camino a seguir.

Esto va junto con lo que Donald Clark ha criticado con razón, como problemas con preguntas de opción múltiple. Señala cómo se utilizan en gran parte como prueba de conocimientos, y estoy de acuerdo que eso está mal, pero mientras hay situaciones prácticas mejores (léase: simulaciones / escenarios / juegos serios), se puede escribir de opción múltiple como mini-escenarios y obtener buenas prácticas . Sin embargo, es aún un problema de investigación interesante, para mí, para tratar de conseguir buenas preguntas de escenarios de contenido auto-análisis.

Se puede ir por un sistema híbrido, donde nos dividimos las funciones entre el ordenador y la intervención de las personas humanas sobre la base de lo que cada uno de nosotros hacemos bien, y me dijo que eso es lo que está viendo en las empresas.

La última parte que me interesaba era si y cómo tales sistemas podrían desarrollar no sólo el aprendizaje de habilidades, pero el meta-aprendizaje o de aprender a aprender. Profesores reales pueden desarrollar este y modificarlo (si bien es cierto y raro), y sin embargo, es probable que sea la mejor inversión. En mi aprendizaje basado en la actividad, le sugerí que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También le sugerí cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

Hay más: normas pedagógicas, modelos de contenido, modelos con alumnos, etc, pero finalmente estamos consiguiendo ser capaces de construir este tipo de sistemas, y debemos ser conscientes de cuáles son las posibilidades”.

Con todo ello la personalización por las tecnologías digitales (algoritmos) sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y es aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

En los ultimos tiempos se están dando sos corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Con el trabajo algoritmico que preconizamos debemos tener siempre presente, tanto en las ideas, el desarrollo propio de andamiaje-algoritmico, así como en su posterior diseño, que deben ser capaces de analizar y llevar a cabo de manera pormenorizada y cuidadosa, conocer de que manera el aprendiz es capaz de aprender a aprender de manera personal y personalizada, por lo que estos siempre tendrán garantizado un apoyo inestimable.

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

Si como científicos de la cognición trabajamos en TI, una industria que actualmente tiene una gran necesidad de personas educadas que comprendan cómo las personas interactúan con la inteligencia artificial y los sistemas automatizados, como diseñadores de interacción, arquitectos de usabilidad, programadores, desarrolladores de sistemas, estrategias de poder o, después de algunos años, como administradores de proyectos.

Si aprendemos métodos para estudiar y moldear el pensamiento, la memoria y la acción tanto para los humanos como de las computadoras, la educación también te capacita para diseñar la interacción entre las personas y la tecnología.

En Inteligencia Artificial (AI) exploramos el pensamiento informático. En neurociencia, observamos lo que está sucediendo en el cerebro. Cuando conectamos lo que nos sucede con lo que sucede en una computadora, el pensamiento se convierte en un híbrido en el que nuestro pensamiento excede los límites entre psicología, cultura, biología y tecnología.

Se puede ir por un sistema híbrido, donde nos dividimos las funciones entre el ordenador y la intervención de las personas humanas sobre la base de lo que cada uno de nosotros hacemos bien, …

Tales sistemas podrían desarrollar no sólo el aprendizaje de habilidades, pero el meta-aprendizaje o de aprender a aprender. Profesores reales pueden desarrollar este y modificarlo (si bien es cierto y raro), y sin embargo, es probable que sea la mejor inversión. En mi aprendizaje basado en la actividad, le sugerí que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También le sugerí cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

Hay más: normas pedagógicas, modelos de contenido, modelos con alumnos, etc, pero finalmente estamos consiguiendo ser capaces de construir este tipo de sistemas, y debemos ser conscientes de cuáles son las posibilidades”.

Con todo ello la personalización por las tecnologías digitales (algoritmos) sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y es aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

En los últimos tiempos se están dando corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metáfora de los presos alrededor que se pusieron alrededor de una torre de vigilancia para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)…., lo que nos conducirá a la resolución de problemas, tanto en sus procesos como en su evaluación:

Para ello utilizaremos el pensamiento computacional como un concepto de resolución de problemas. Es un pensamiento especial que nos permite comprender un problema complejo y desarrollar posibles soluciones. Soluciones que pueden presentarse de forma que un ser humano, una computadora o ambos puedan entender. Pero el pensamiento computacional se puede describir desde una comprensión muy estrecha o muy amplia.

En la comprensión estrecha, el pensamiento computacional contiene cuatro conceptos clave:

         a-Descomposición: que podría dividir un problema o sistema complejo en partes más pequeñas y manejables

         b-Reconocimiento de patrones — que se refiere a buscar algo uniforme alrededor y en un problema

         c-Abstracción: lo que significa centrarse en la información importante e ignorar detalles irrelevantes

         d-Algoritmos: se refiere al desarrollo de soluciones paso a paso para un problema o la preparación de reglas para resolver un problema

Las cuatro piedras angulares son igualmente importantes. Se pueden entender como estar en un taburete. Si falta uno, se produce un. cortocircuito en el proceso. El pensamiento computacional significa dominar estas cuatro técnicas.

Por lo tanto, el pensamiento computacional no es lo mismo que la programación. Tampoco es un concepto de pensar como una computadora, porque una computadora no puede pensar. Solo hace lo que el programa dice que debería hacer. Pero el pensamiento computacional puede permitirnos saber qué decir a la computadora para que realice una determinada acción. Sin embargo, las habilidades que se encuentran detrás del concepto de pensamiento computacional también se pueden usar en una serie de otras situaciones de resolución de problemas que no se relacionan con computadoras en absoluto. Ser capaz de simplificar un problema complejo para que podamos entenderlo fácilmente

En una comprensión más amplia del pensamiento computacional, el concepto se extiende a ambos contienen una cantidad de conceptos y enfoques.

Los cuatro conceptos clave se complementan con:

         1-Lógica — que se refiere a predecir y analizar acciones dadas

         2-Evaluación — en el entendimiento de poder evaluar y juzgar

Además, añade una descripción más detallada de los cuales se acerca al “pensador computacional” es el trabajo que se puede describir como una actividad persistente, la experimentación para crear algo en cooperación con otros y está en curso mejoras y correcciones de errores basada de las experiencias que se están haciendo.

Una comprensión aún más amplia del Pensamiento Computacional debe contener requisitos estéticos y éticos en relación con las soluciones con las que se trabaja en relación con un problema determinado.

Si vamos a integrar el pensamiento computacional como un tema o como parte de la formación general, es importante que analicemos cómo entendemos el concepto equiparando el pensamiento y la codificación computacionales. Las habilidades no se pueden lograr mediante simples tareas de codificación, son competencias que contienen los enfoques legendarios, experimentales e innovadores y las consideraciones estéticas y éticas.

Con ello debemos adquirir habilidades clave como:

         a-pensar cuantitativamente (tanto matemáticamente como estadísticamente);

         b-pensar algorítmicamente como una continuación del proceso de avance del pensamiento (iniciado durante sus días de escuela);

         c-pensar en términos de aprendizaje automático y predicción;

Para participar en actividades de pensamiento de nivel superior en términos de representar los fenómenos / resultados observados en forma de modelos y luego simular.

Jeannette Wing acuñó el término pensamiento computacional en un artículo reciente del MCCA de 2006. . Ella argumenta que para que los estudiantes apliquen técnicas computacionales o aplicaciones informáticas a los problemas y proyectos en su disciplina particular (ya sean las artes, las ciencias, las humanidades o las ciencias sociales), este conjunto de habilidades se vuelve necesario. Wing también afirma en su artículo seminal que las ideas de abstracción, estratificación de abstracciones y automatización son algunos de los conceptos fundamentales de la informática que han proporcionado nuevos conocimientos sobre las ciencias naturales y las ciencias sociales duras.

Enfatiza que el pensamiento computacional es una habilidad básica emergente para todos, no solo para los informáticos. Por lo tanto, debe convertirse en una parte integral de la educación y agregarse a la capacidad analítica de cada alumno, además de las habilidades de lectura, escritura y aritmética. Al utilizar los conceptos fundamentales para la informática, el pensamiento computacional permite y mejora la capacidad de resolver problemas, diseñar sistemas y comprender el comportamiento humano (Wing, 2006).

Si parece que el tener presente como base la creación de patrones para resolver problemas, no es menos cierto que la variedad de tareas y actividades actualizadas proporciona al estudiante la flexibilidad de elegir y repetir las tareas para aprender las técnicas a su propio ritmo. Esto le permite al alumno tener el control de todo el proceso de aprendizaje.

Podemos emplear como eje investigar, desarrollar y determinar la eficiencia del uso de un entorno b-learning en la adquisición de habilidades básicas de programación a través de la personalización del contenido para cada alumno, para lograr que un conjunto de actividades que se pueden utilizar se diseñen teniendo en cuenta diferentes niveles adaptados a la personalización de aprendizajes de cada alumno por medio de un de un pensamiento computacional que por medio del soporte del machine learning cree aplicaciones para cada estudiante. La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

Se implementará un enfoque metodológico mixto para lograr los objetivos. El enfoque cuantitativo, cuyas características al utilizar fenómenos de medida estadística, la experimentación y el uso del análisis causa-efecto permiten un proceso secuencial, deductivo y de prueba para generar resultados. El enfoque cualitativo se lleva a cabo básicamente en entornos naturales y los significados se extraen de los datos que permiten un proceso que contextualiza el fenómeno y la profundidad de las ideas, mas, plenamente ya dentro del espacio de personalized learning con el pensamiento computacional y que a su vez nos ayudará a medir el nivel cognitivo de los estudiantes en el pensamiento computacional, los instrumentos se diseñarán en base al banco de elementos para contar con instrumentos fiables ( válidos (medidas de aprendizaje) y objetivos (se centra en el concepto a medir) que coinciden con los contenidos de cada proceso.

El resultado principal es generar una educación personalizada, una experiencia de aprendizaje que contribuya a la motivación del estudiante en sintonía con los objetivos académicos y su aplicación laboral.

Pero …

¿En qué parte de este proceso hay una oportunidad de mirar realmente fuera de nuestras paredes y ver qué está sucediendo en el mundo? Nuestras urgentes necesidades de aprendizaje no solo están ligadas a los datos finales sobre las prioridades de aprendizaje del pasado. A medida que el mundo cambia a un ritmo exponencial, ¿Quién está determinando lo que nuestros estudiantes necesitarán para prosperar en ese mundo?

“Estar dispuestos a interrumpir constantemente nuestra mentalidad individual y colectiva, si queremos llegar a un acuerdo con las interrupciones necesarias que deben ocurrir en nuestras propias organizaciones si realmente queremos librarnos del pensamiento de status quo que a menudo nos entierra en las prácticas del pasado.

Ver cómo las ‘próximas’ prácticas también necesitan las ‘próximas’ métricas si queremos pivotar de manera efectiva hacia este futuro emergente y más deseable que visualizamos para nosotros y nuestras organizaciones “.

Las necesidades urgentes de aprendizaje de los estudiantes son personales. Cada niño, cada adulto en el sistema tiene necesidades personalizadas que no pueden ser determinadas por el pensamiento estandarizado.

Nuestro pensamiento, los profesores conectados, cuando tienen una comprensión profunda de las expectativas del plan de estudios, pueden diseñar un aprendizaje personalizado para cada niño / estudiante. Crear este entorno para nuestros alumnos requiere una base de pensamiento de conectividad. Los maestros deben poder acceder y participar en una red de apoyo, y usar esta red para apoyar las necesidades individuales de aprendizaje de cada estudiante.

¿Cómo apoyamos a los educadores a autodirigir su aprendizaje a través de sus propias redes de aprendizaje profesional?

“… no solo serán las personas las que tendrán que convertirse en aprendices adaptables, permanecer ágiles en nuestro mundo exponencialmente cambiante en el que vivimos ahora … también lo deben hacer nuestras organizaciones educativas si quieren seguir siendo centros importantes, dinámicos y relevantes de aprendizaje, innovación y transformación frente a estos cambios y cambios sísmicos “

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo de las personas intervinientes en el proceso de aprendizaje ABIERTO, INCLUSIVO Y UBICUO .

Además, en muchos escenarios distribuidos, nos gustaría que los agentes aprendan y optimicen sus políticas en tiempo real, lo que es casi imposible de lograr con modelos centralizados. Investigadores de la inteligencia artificial (IA), publicaron un documento en el que presentaron un método para lo que denominaron “Aprendizaje de refuerzo distribuido entre actores críticos”. algo así como un aprendizaje descentralizado ya que se dirige a las topologías que no solo se distribuyen sino que carecen de coordinadores centrales.

El principio de aprendizaje de similitud de tareas

Los escenarios de aprendizaje de refuerzo multi-agenteson, en términos prácticos, es una de las arquitecturas de aprendizaje profundo más complejas para implementar. La teoría de juegos, la programación distribuida y el aprendizaje no supervisado (LO QUE NOSOTROS HEMOS INVESTIGADO Y TRABAJADO DENTRO DE LOS NO LUGARES ( https://juandomingofarnos.wordpress.com/…/los-no-lugares-e…/ de Juan Domingo Farnos) chocan en los escenarios para crear un entorno increíblemente desafiante para los científicos y desarrolladores de datos.

Serán cientos de miles de nodos que pueden aprender varias tareas. En una topología centralizada típica, la complejidad de la arquitectura está dictada por dos factores inconexos: la cantidad de nodos y el número de tareas. A medida que se agregan más nodos a la red, la comunicación con el coordinador centralizado se vuelve más compleja. Como los agentes necesitan aprender nuevas tareas, el coordinador central se ve obligado a coordinar las políticas de aprendizaje a través de un número arbitrario de nodos en la red.

Podríamos llamar a este conocimiento el Principio de aprendizaje de similitud de tareas y puede conducir a modelos de optimización potentes en escenarios , con lo que asi, si que podemos DOCENTES Y ALUMNOS potenciar habilidades propias del siglo XXI y por tanto, por una parte entrar en dinámicas de aprendizaje FLEXIBLES, ABIERTAS, INCLUSIVAS y por otro entrar de lleno en lo que denominamos EDUCACIÓN DISRUPTICA, que nos que nos ayudara a construir esta nueva CULTURA que necesitamos para crear otros valores, escalables evidentemente y enriquecidos con las TIC, y por otra, llegar a todas las propuestas que queremos llevar a puerto.

El principio de aprendizaje de similitud de tareas básicamente significa que, si un agente de RL aprende una política de tareas específica, otros agentes en la red que realizan tareas similares pueden aprovechar esa política, por lo que antes necesitamos establecer otro PARADIGMA abierto a otros PARADIGMAS, que nos lo permitan, aprovechando esa idea, de estructura conectada en RED en el que hay rutas entre nodos que realizan tareas similares.

En ese NUEVO ESCENARIO, cada agente aprende de los datos recopilados y procesados realizaran su propia tarea (APR3ENDIZAJE AUTONOMO) … https://juandomingofarnos.wordpress.com/…/trrabajadores-de…/ Juan Domingo Farnos

Luego intercambia los parámetros aprendidos con solo sus vecinos más cercanos, de modo que todos los agentes se beneficien de los procesos de aprendizaje de sus vecinos.

Entendemos pues que este DISEÑO DE ARQUITECTURA dispone de ANDAMIAJES COMPLETAMENTE DESCENTRALIZADOS reemplazando a un coordinador central con un gráfico conectado en el que los agentes aprenden de forma independiente y luego comparten algunos parámetros intermedios con sus vecinos 8EDUCACION PERSONALIZADA/SOCIALIZADORA dentro de un ambiente INCLUSIVO y por tanto con un VALOR AÑADIDO que entra de lleno en la comunidad.

Al comunicarse entre sí, los agentes cercanos tienden hacia el consenso. A medida que la información se difunde a través de la red, cada agente se beneficia del proceso de aprendizaje de cada uno de los otros agentes. Dado que los agentes solo pueden comunicarse con sus vecinos, la complejidad computacional y la sobrecarga de comunicación por agente aumentan linealmente con el número de vecinos en lugar del número total de agentes.

Los modelos de aprendizaje descentralizados serán clave para implementar escenarios de aprendizaje reforzado a gran escala y la primera premisa donde ubicar las nuevas HABILIDADES DEL SIGLO XXI y también la ayuda necesaria en el CAMBIO DE ROLES entre DOCENTES Y ALUMNOS, como nunca antes había sido posible. El surgimiento de tecnologías como blockchains y ledgers distribuidos, están contribuyendo a acercar el aprendizaje descentralizado y no controlado profundo a la realidad.

Entonces si estaremos dentro de una ecología del conocimiento , como un complejo, conocimiento intensivo del paisaje que emerge de la conexión de abajo hacia arriba Como sistemas adaptativos complejos, tiene una ecología de conocimiento propiedades emergentes, incluye entidades autogestionadas y puede evolucionar en formas que no podemos esperar o predecir.

Estas Ecologías del conocimiento desdibujan las fronteras del aprendizaje que se produce de manera ascendente y emergente, en lugar de aprendizaje que funciones dentro de un contexto estructurado, de un marco global, en forma de comando y de control.

Vamos a :

1. cuestionar, criticar y rechazar algunos aspectos de las prácticas aceptadas,

2. analizar la situación,

3. Construir de una nueva solución a la situación problemática,

4. examinar los procesos de aprendizaje de manera continuada.,

5. implementación de lo que vamos construyendo, pero sin miedo a volverlo a empezar de manera diferente,

6. reflexionar sobre y evaluar el proceso,

7. consolidar los resultados en una nueva práctica estable, pero teniendo en cuenta que nunca se basará en la certidumbre.

En general, utilizando la teoría de la actividad como un marco para el análisis de la actividad en ambientes de aprendizaje complejo tiene una limitación importante. El aprendizaje como una actividad compleja no puede ser capturada por un sistema global de la actividad (o incluso una red de sistemas de actividad) útil orientada a la consecución de un objetivo de la actividad. El aprendizaje es multifacético y dinámico, y las actividades en un ambiente de aprendizaje son borrosas, variadas, lo que hace muy difícil obtener una imagen completa de los sistemas de actividad bajo observación, que abarca, en términos de teoría de la actividad, un conjunto en evolución de los sujetos, objetos, mediación de artefactos, acciones, reglas, normas y división del trabajo. La solución a este problema es entender la actividad de aprendizaje desde la perspectiva del aprendiz.

Schunk (1991, ) destaca cinco preguntas definitivas para distinguir cada teoría de aprendizaje de los demás:

1. ¿cómo se produce el aprendizaje?

2. ¿Qué factores influyen el aprendizaje?

3- ¿cómo ocurre la transferencia?

¿Qué objetivos específicos alimentan el objetivo o la solución general? Los objetivos de aprendizaje, a partir de la síntesis de objetivos más pequeños, más centrados, pueden trazar un camino desde el nivel actual de habilidad o conocimiento al nivel deseado por los aprendices/alumnos/docentes.

No todos los objetivos de aprendizaje son útiles de la misma manera o destinados a la misma audiencia. En 2006, Will Thalheimer, presidente de Work-Learning Research, publicó una “Nueva Taxonomía para Objetivos de Aprendizaje”, que delinea cuatro tipos de objetivos de aprendizaje, cada uno con una función específica.

Estos son:

1-Objetivo de enfoque: guiar la atención de los alumnos hacia los aspectos más importantes del material de aprendizaje

2-Objetivo de rendimiento: Proporcionar a los alumnos una comprensión rápida de las competencias cubiertas en el material de aprendizaje

3-Objetivo de diseño instruccional: guiar el diseño y desarrollo de aprendizaje e instrucción

4-Objetivo de evaluación educativa: Guía para la evaluación de la instrucción

Los primeros dos están enfocados en el estudiante; generalmente se presentan a los estudiantes al comienzo de un curso de instrucción. Ellos distinguen entre lo que los estudiantes deben prestar atención (enfocarse en) y lo que realmente necesitan hacer con el nuevo conocimiento o habilidad (rendimiento). Están buscando identificaciones y otros en el diseño, desarrollo y evaluación del eLearning.

Es costumbre decirles a los estudiantes cuál es el enfoque y el rendimiento; a menudo, eLearning se abre con una pantalla que enumera los objetivos. Dirksen señala que solo proviene de la única o la mejor manera de lograrlo, y sugiere presentarlo con un desafío o una misión. Thalheimer señala una investigación que considera que las “preguntas previas” son al menos tan poderosas como los objetivos de aprendizaje al dirigir la atención de los alumnos hacia el material más importante.

El desafío será e promover el aprendizaje sin sacrificar el rendimiento a corto plazo. En equipos bien dirigidos-, un clima de apertura podría hacer más fácil para comunicar y tratar los errores en comparación con los equipos con las malas relaciones con los líderes o punitivos. Los buenos equipos, de acuerdo con esta interpretación,, aportarán más valor añadido…

Las personas que tendrán y tienen las ideas diferentes a las anteriores sociedades deberán convertirse en líderes de equipos que fomenten la discusión abierta, el ensayo y error, y la búsqueda de nuevas posibilidades en los pequeños grupos que influyen directamente. La otra tarea que tendrán sera trabajar duro para construir organizaciones que conducen a extraordinarias posiciones de trabajo en equipo y el aprendizaje en toda su extensión.

Normalmente y esto lo pueden ver en los estudios del profesor de LA UNIVERSIDAD DE HARVARD ( Amy Edmondson ), aquellos equipos que trabajan más de manera redárquica y comunicativa, siempre tienen más errores a corto plazo, pero a medio y largo plazo, el rendimiento se multiplica de manera exponencial.

(“brechas”). Las lagunas pueden ocurrir debido a falta de conocimiento o habilidades; estos son fácilmente llenados por materiales de instrucción. Pero la instrucción por sí sola no puede llenar las lagunas en la motivación, las brechas creadas por el hábito o los factores ambientales, o las que resultan de una mala comunicación.

Ahora los aprendices pueden tener acceso gratuito al contenido de múltiples fuentes a través de Internet. Pueden elegir alternativas, incluyendo interpretaciones, áreas de interés, e incluso fuentes de la acreditación. Tienen herramientas, tales como teléfonos móviles y cámaras de vídeo, para recopilar ejemplos y datos numéricos se pueden editar, almacenar y utilizar en el trabajo del estudiante. Por lo tanto, la estricta gestión de un plan de estudios preparado sobre la base de un contenido limitado elegido por el personal de entrenamiento se vuelve menos significativa. Por tanto, el énfasis se traslada a la decisión de lo que es importante o relevante, tanto en el material para las necesidades del estudiante o un estudiante individual.

Es probable que los estudiantes en una “clase” tendrán múltiples necesidades diferentes.(aprendizaje personalizado) En el marco de los objetivos de aprendizaje, los enfoques más flexibles para la selección del contenido, entrega, evaluación y otros factores comienzan a emerger. Algo igualmente importante es el desarrollo de los estudiantes que toman la responsabilidad de su propio aprendizaje, a ser abordado como una habilidad para enseñar y aprender.

Este enfoque se opone a la capacitación del personal para dar la espalda a la selección y transmisión de información en grandes bloques o partes (como es el caso en una exposición de un profesor de una hora) para guiar a los estudiantes y estudiantes para encontrar, analizar, evaluar y aplicar la información que es relevante para un tema específico.

La “relevancia” se convierte en negociable entre la formación del personal y los estudiantes. De hecho, el papel del intercambio de capacitación del personal en este contexto sea más que de una facilitación del personal, que tiene menos control sobre dónde y cómo tiene lugar el aprendizaje y que a menudo debe iniciar las negociaciones sobre cómo exactamente el contenido.

El Aprendizaje digital puede dejar una “huella” en la forma de contribuciones permanentes de los estudiantes en la discusión en línea y electrónica con PORTFOLIOS de trabajo con la recogida, almacenamiento y evaluación de las actividades de multimedia en línea «alumno o estudiante. ‘s de revisión por pares involucra a los estudiantes en el examen de su trabajo conjunto, proporcionando información valiosa que se puede utilizar para documentar la revisión y promover una mejor comprensión de los temas. (LA EVALUACIÓN ES RESPONSABILIDAD DE LOS APRENDICES y deja de ser solo un aprendizaje más a ser EL MISMO APRENDIZAJE.

Las analíticas de aprendizaje se desarrolla para que este estudiante monitoreo aprendizaje más fácil y escalable, como lo demuestran sus actividades digitales. Esta retroalimentación analítica provistos a los aprendices puede continuar durante todo el curso y dar lugar a un diagnóstico temprano que permita a los estudiantes a enfocarse en sus debilidades en algunas áreas , siendo la evaluación formativa y formadora, la verdadera evaluación. (LOS PROCESOS HAN SUPERADO LOS OBJETIVOS).

Realmente el mundo cada vez es mas complejo y los aprendizaje de cada aprendiz necesitan alejarse del “control” típico, ya que “dentro” de las aulas se esta produciendo una “involución educativa”, por lo menos en lo que se refiere a nuestro tiempo, pero eso si, aprender fuera de este escenario significa autoaprendizaje, autolideraje y colaboracion diferenciada y diversa 8inclusividad), sin ello es imposible, además de entrar dentro de la dinámica de los datos y macrodatos analizados por medio de tecnologias automatizadas y algoritmos que poco a poco (por no decirlo crudamente, de una manera inmediata), van a ayudarnos a construir escenarios de aprendizaje personalizados y socializadores escalables y mutables.

Los docentes del siglo XXI, han de comprender que ya nunca más serán las”estrellas”, de la educación, que nunca más serán mejor que nadie…los docentes de la sociedad del conocimiento son aquellos que nunca saldrán “en la foto”, pero si que acompañarán a los alumnos en su aprendizaje, ya nunca serán “el pozo del conocimiento”, sino personas con las competencias necesarias de ayudar a los aprendices en su aprender a aprender…. (en la foto salen los aprendices, ellos son los protagonistas y los responsables de su vida)….

El Rol del Docente Tradicionalmente ha sido la figura de autoridad en el aula, desde el punto de la capacidad intelectual y del poder. El docente era visto como el depositario del conocimiento y su rol era el de llenar las mentes de sus alumnos con su conocimiento y entonces luego lograr que los alumnos regurgitaran este conocimiento en el proceso de evaluación. Esta es la forma en que muchos de nosotros fuimos enseñados y como en muchos casos algunos todavía enseñamos1 Después de todo, los alumnos son más fáciles de .controlar cuando están sentados en sus asientos, escuchando una clase expositiva,

En el proyecto de Enseñanza para la Comprensión, llevado a cabo por investigadores de Harvard, Wiske expone que el entorno de enseñanza tiene influencia sobre el rol de los docentes en la enseñanza y aprendizaje del conocimiento. “Muchos docentes de escuela trabajan en entornos que promueven la conducta de transmitir conocimiento a sus alumnos más que de construir y criticar el conocimiento con sus alumnos” (Wiske en Perkins 1995, p.204). 11contestando preguntas o completando cuestionarios escritos.

También es una forma rápida de recorrer el currículum y cubrir todas las unidades. De todos modos, la investigación muestra que el método de enseñanza tradicional no contribuye al aprendizaje efectivo, y no utiliza el potencial de la tecnología (Jonassen, Norton & Wiburg, Sandholtz, Ringstaff, & Dwyer, McCormick & Scrimshaw2). De hecho, muchos creen que una buena herramienta puede ser inútil si no es integrada dentro de estrategias efectivas de enseñanza. “No podemos enchufar a los alumnos a una herramienta de la mente (MindTool) y esperar que trabajen sin nuestra guía y apoyo…” (Jonassen, 2000, p.275-276).

De este modo, queda en el docente la decisión de pensar más allá de las formas tradicionales de enseñanza y de diseño de las clases y liderar experiencias de aprendizaje ricas en tecnología que apoyen el pensamiento basado en la indagación (inquiry-based thinking).

Un enfoque constructivista creará un escenario apropiado para este tipo de pensamiento. En una clase constructivista, los docentes tienen la responsabilidad de cubrir cuatro roles principales: Diseñador de Tecnología; Experto en Audiencia; Experto en Currículum; Experto en Proceso:

1. Diseñador de Tecnología Aunque los docentes no necesiten saber todas las opciones de una herramienta digital (cómo cambiar los colores, en qué botón hacer un clic para agregar una animación, etc.), sí necesitan entender el valor educativo de una herramienta digital o qué puntos fuertes presenta para influir positivamente en el aprendizaje. Necesitan saber de qué modo la tecnología puede ser usada para localizar las dificultades que los alumnos experimentan en relación al currículum. Si el objetivo de un docente es “enseñar tecnología”, el potencial de la tecnología queda sin verse. Y, probablemente, también se desaproveche la competencia central del docente.

Los docentes deben utilizar las habilidades que adquirieron luego de años de experiencia y ser diseñadores de experiencias de aprendizaje. Norton y Wilburg (2003) identifican a un docente diseñador como aquel que reconoce la centralidad de la planificación, estructuración, abastecimiento y orquestamiento

Podemos argumentar que cuando la tecnología es usada como un dispositivo efectivo, el rol del docente y del alumno continúa siendo el mismo. Cuando la tecnología es usada para extender el aprendizaje, el rol del docente como fuente de conocimiento es desplazado de alguna manera y comienza a tomar valor la independencia del alumno.

Cuando la tecnología es usada como un dispositivo transformativo, la diferencia entre docente y alumnos cambia, y toma importancia la comunidad de docentes y alumnos. 12del aprendizaje. Argumentan que el rol del docente es diseñar experiencias de aprendizaje que permitan a los alumnos utilizar la tecnología para resolver problemas, desarrollar conceptos, y apoyar el pensamiento crítico, antes que usar la tecnología para adquirir conocimiento fáctico. O dicho más directamente, los docentes necesitan crear actividades de aprendizaje que logren de sus alumnos aprendices activos, que utilicen la tecnología para desarrollar el conocimiento y la comprensión.

Una de las cosas principales que un docente debiera evitar es diseñar experiencias donde la tecnología haga algo para darle conocimiento a sus alumnos. Es importante que el diseño ubique a los alumnos en el control de la tecnología, no viceversa. Si los alumnos se convierten en sirvientes de la tecnología percibirán que la tecnología sabe algo que ellos no, la computadora es vista como algo “mágico” y no como una herramienta que puedan usar para poner al descubierto el conocimiento (Schwartz en Perkins, 1995).

Hay muchas consideraciones para hacer cuando se diseñan experiencias de aprendizaje enriquecidas con tecnología, cosas que requieren que el docente tenga en cuenta en su clase. Su expertise debe ser aplicada para diseñar y facilitar clases donde predomine el pensamiento, la creatividad, la reflexión, y no simplemente dónde y cuándo hacer clic. 2. Experto en Audiencia Otra competencia central que los docentes deben aportar a una clase donde se integra la tecnología, es el conocimiento de sus alumnos y sus distintas habilidades.

Específicamente, ¿Cuáles son sus intereses y qué es lo que los motiva acerca del aprendizaje? Además, ¿en qué componentes del curriculum encuentran dificultades y qué nivel de andamiaje es necesario para acortar la brecha entre lo que actualmente saben y lo que necesitan comprender? Los docentes deben considerar cómo asignar distintos roles a sus alumnos para que revelen su potencial propio y sus conocimientos. Sandholtz, Ringstaff, y Dwyer (1997) encontraron que los docentes dieron cuenta de incrementos beneficiosos en la colaboración e interacción entre los alumnos cuando la tecnología era integrada en sus clases. “Aparentemente tanto docentes como alumnos pueden sacar provecho del conocimiento y expertise de algunos alumnos, expandiendo además de este modo cada vez más la participación de estos alumnos en clase”. 133. Experto en Curriculum

Es esencial que los docentes estén familiarizados profundamente con el curriculum, tanto en su contenido como en la concatenación de los mismos. Los docentes deben estar atentos a las comprensiones de sus alumnos así como también a los errores conceptuales, además de identificar aquellas áreas del curriculum donde los alumnos tengan una dificultad particular. Como expertos en curriculum, los docentes deben comprender cómo introducir efectivamente “trozos” del mismo que promuevan en los alumnos nuevas comprensiones.

El proyecto de Enseñanza para la Comprensión, llevado adelante por investigadores de Harvard, reveló dos rasgos recurrentes del curriculum que fomentan la comprensión (Wiske 1998). Uno es que el curriculum debe cumplir con las necesidades, intereses y experiencias de los alumnos. El segundo rasgo es que el curriculum debe lograr algo más que dar información, debe empujar a los alumnos a pensar en profundidad y a conectar las ideas con otras áreas de la indagación. Los investigadores de este proyecto apoyan la idea de la necesidad que el curriculum sea personalizado para grupos particulares de alumnos, y para asegurar la equidad y legitimidad a través del respeto a un curriculum estandarizado. Ellos creen que los docentes juegan un rol central en el modelado del curriculum para que cumpla con las necesidades y requerimientos de los alumnos.

El docente cente como experto en el curriculum debe sentirse libre para poder crear experiencias de aprendizaje constructivistas que cumplan los requerimientos del curriculum, y ser capaces de considerar dónde es apropiado integrar la tecnología para promover la comprensión.

Experto en Proceso Es un gran desafío el poder lograr procesos y estrategias de enseñanza efectivos para una clase constructivista, que requiera de prueba y error y posterior reflexión.

En una clase constructivista, el docente no es simplemente quien les dice a los alumnos lo que deben saber. Es, en cambio, quien debe ayudar al alumnos a articular lo que deben saber y cómo lograr saberlo y cada vez mejor. El docente es un facilitador, un coach, y un mentor cognitivo. Cambian el rol desde uno central donde deben modelar la situación problemática a resolver, hasta un rol periférico donde deben alentar a los alumnos a interactuar entre ellos y a construir su propio conocimiento

Los docentes pueden mostrar a sus alumnos vías para descubrir qué es lo que no saben y utilizar nuevo conocimiento para resolver el problema. De esta manera, el docente está modelando su propio proceso de pensamiento. También aquí podemos hablar de las decisiones acerca del uso apropiado de la tecnología.

Es importante que los docentes puedan exponer a sus alumnos a una variedad de tecnologías que sean apropiadas para cada caso, y que ilustren las bases para decidir dónde y cuándo implementar determinada herramienta tecnológica. Este modelo pone al descubierto cierto tipo de creencias erróneas acerca de que la tecnología ayuda a los alumnos a ser consumidores inteligentes de tecnología. Quizás como muchos docentes ya lo han experimentado, hay una rutina logística a llevar a cabo en la planificación del uso de la tecnología en el aula.

Quizás haya que reservar un espacio determinado, cargar determinado software, reservar equipamiento, etc. Bastante a menudo además, alguna parte de la tecnología falla o no se comporta del modo esperado. Burbules y Callister (2000) lo dicen: “el potencial de las nuevas tecnologías incrementa la necesidad de ser creativos, de planificar cuidadosamente y de enfrentarse a nuevos e inesperados desafíos”.

El Rol del Alumno así como el rol del docente debe cambiar en las aulas en las que se integran tecnologías, el rol del estudiante también. Los estudiantes necesitarán tomar dos roles importantes: deberán ser aprendices activos y consumidores inteligentes de tecnología.

1. Aprendices activos Los estudiantes no pueden seguir siendo receptores pasivos de información. En una enseñanza constructivista se espera que se involucren activamente y sean responsables de su propio aprendizaje.

Necesitan estar motivados en la construcción de conocimiento y deseosos de incursionar en el conocimiento compartido por sus compañeros de clase. El estudiante, no el docente, se transforma en el foco del proceso de aprendizaje. Algunos docentes son escépticos con respecto a la habilidad de los estudiantes para asumir un rol central en su propio aprendizaje.

Probablemente recuerden visiones de los estudiantes salteándose las clases o copiándose la tarea. También los docentes pueden recordar aquellos estudiantes que generalmente completan toda la tarea que se les ha 15asignado, pero por el simple hecho de finalizarla, no con el fin de desarrollar o profundizar su comprensión. Estas estrategias minimalistas que apuestan a combatir el sistema no funcionan en un contexto constructivista ya que la construcción del conocimiento es mucho más importante que la transmisión del mismo. Los docentes se preocuparían por el posible fracaso de los estudiantes, si se les pidiera que tuvieran que asumir la responsabilidad por su propio aprendizaje.

En el proyecto ACOT los investigadores observaron que inicialmente, los estudiantes no estaban habituados a pedir ayuda a sus pares pero que rápidamente prefirieron aquellos métodos de enseñanza que requerían una participación activa en vez de pasiva. A medida que los estudiantes tuvieron una mayor responsabilidad en su aprendizaje, se sintieron más dueños de este proceso

2. Consumidores “inteligentes” de tecnología Burbules y Callister (2000) nos recuerdan que los estudiantes deben ser reflexivos y críticos acerca de la tecnología, y deben estar preparados para la posibilidad de que los beneficios obtenidos de la tecnología puedan estar atenuados por los problemas imprevistos y las dificultades que se crean por su uso. Es importante que los estudiantes puedan ver que hay ocasiones en que la tecnología es útil y otras en que no lo es. En resumen, el estudiante es responsable en tomar una decisión crítica de cuándo y si la tecnología debe ser utilizada. Sería aún más beneficioso si también pudieran determinar qué tecnología sería más efectiva para promover comprensión.Conclusión La tecnología es un recurso poderoso que puede tener un gran impacto en la comprensión. El simple hecho de integrar tecnología en la clase crea nuevas condiciones para enseñar y aprender, forzando a alumnos y docentes a abordar la enseñanza y el aprendizaje de una manera diferente.

Sin embargo, si la diferencia produce un nivel alto o profundo de comprensión depende de la pedagogía que se utilice. La pedagogía tradicional ha probado ser un método ineficaz. Los estudiantes simplemente aprenden a realizar sus trabajos rápidamente y a repetir la información en una prueba. Una pedagogía constructivista crea la mejor posibilidad para lograr un aprendizaje significativo.

El aprendizaje basado en la indagación, centrado en el alumno, crea un escenario activo y reflexivo para desarrollar comprensiones profundas. Es inteligente y responsable el explotar los puntos de influencia de la tecnología para localizar áreas de dificultad en el currículum.. Los docentes y los alumnos deberán asumir nuevos roles y nuevas responsabilidades en una clase que integra tecnología con una pedagogía constructivista, pero los beneficios educativos son prometedores.

Los nuevos docentes están convencidos de las ventajas de incluir dispositivos como los celulares y el uso de internet en la escuela”, asegura Craig, y afirmó además que “los docentes antes eran los dueños del saber y ahora ya no, está en internet”. ((((Diego Craig))))

Una de las implicaciones de usar las herramientas Web 2.0 en la educación es el aprender ya no como una experiencia individual, tal como lo planteaban las teorías de aprendizaje más tradicionales, sino a través de la formación de conexiones e interacciones (conectivismo) a través de sistemas abiertos. Esto último permite el desarrollo de competencias mediante la experiencia de otras personas, el mantenerse actualizado mediante la diversidad de opiniones, etc.

Ello también implica el cambiar el paradigma de que tener el conocimiento es lo importante, sino que ahora el saber aprender será más valioso.

¿Cuál es el lugar de la tecnología en la educación? Muchos docentes, al considerar la integración de la tecnología en sus prácticas, se preguntan dónde se insertaría ésta en sus contextos educativos. Algunos pueden sentir que integrar la tecnología al ya recargado currículum es como tratar de copiar una página en una fotocopiadora que tiene papel atascado. Otros se preguntan si sus habilidades tecnológicas les permitirán llevar adelante una clase donde integren tecnología.

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?

¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?

¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

En este sentido, los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción según nuestros personalismos. El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.

La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.

  • Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.
  • Inteligencia Artificial aplicada Weak AI (Narrow AI o Applied AI): aquí es donde entran el uso que hacemos a través de algoritmos y aprendizaje guiado con el Machine Learning y el Deep Learning.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.

Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podéis estar seguros.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

La gente tiene que aceptar su responsabilidad personal y colectiva. Porque cada vez que creamos un vínculo, cada vez que “al igual que” algo, cada vez que creamos un hashtag, cada vez que compremos un libro en Amazon, y así sucesivamente,… que transformemos la estructura relacional de la memoria común y eso lleva, como venimos diciendo siempre, una responsabilidad y un compromiso.

Por lo tanto, también tenemos que desarrollar el PENSAMIENTO CRÍTICO Todo lo que encontremos en el Internet es la expresión de puntos de vista particulares, que no son ni neutrales ni objetivos, sino una expresión de subjetividades activas. ¿De dónde viene el dinero? ¿De dónde proceden las ideas? ¿Qué es el contexto pragmático del autor? etcétera…

Este precio informativo se compone deDATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.

En la educación básica se promueve que el sistema decimal es el único “natural”

Nunca vemos los algoritmos que hacen su trabajo, incluso a medida que nos afectan. Ellos producen en sus sistemas de cifrado, todo invisible, enterrado en cajas negras componer silencio sinfonías de ceros y unos….

El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .

“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

https://juandomingofarnos.wordpress.com/…/los…/Los algoritmos sales de las Universidades de Juan Domingo Farnós Miró

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metáfora de los presos alrededor que se pusieron alrededor de una torre de vigilancia para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Las diferencias de poder y las cuestiones de desigualdad con los aprendices deben ser tomadas en serio en todos los contextos. Por otra parte, el grado en que el aprendizaje es emancipador u opresivo depende al menos tanto o más en los contextos organizacionales, sociales, culturales, económicos y con políticas más amplias en las que el aprendizaje tenga su sede, como en las prácticas reales de aprendizaje y pedagogías involucradas.

La eficacia de la circulación de información entre pares sugiere, por el contrario, que la participación en la práctica, en lugar de ser su objeto, bien puede ser la condición para la efectividad del aprendizaje “. (Lave y Wenger):

     1-La certeza y la estructura da una sensación de seguridad y tranquilidad. La incertidumbre es una enfermedad, según muchos terapeutas.

2. ¿Cuáles son los retos para el docente y para el estudiante? ¿Qué tan preparados están para afrontar los cambios en la educación? 

En la sociedad de hoy hay dos conceptos que o confundimos o no asimilamos, …la digitalización informatizada es un proceso técnico, mientras que la digitalización social es un proceso humano que en este caso implica una profunda revolución sociotécnica, todo ello nos lleva a otra sociedad, e aplica al proceso de interiorización personal y de coherencia social de las funcionalidades y efectos múltiples, directos, secundarios y hasta ocultos de esta tecnología.

Su socialización, cuyo resultado es la Sociedad de la Información, es un factor engañoso de progreso, si no está dirigido por una cultura madura de la tecnología, a la que podríamos denominar socio-tecnocultura y que representa un objetivo educativo por el que luchar.

Entre las medidas necesarias para comprender mejor la dinámica de esta revolución sociotécnica que vivimos habría que completar la formación en muchas especialidades con dosis adecuadas de interdisciplinariedad, generalizar la práctica del sistemismo diversificado (inclusividad soci-educativa, por ejemplo) y del pensamiento complejo y crear, para difundirlo, un repertorio básico de conceptos sociotecnoculturales…y para ello necesitamos tecnologías inmersivas o no, pero al fin y al cabo las herramientas y los instrumentos siempre han sido utilizados por todas las sociedades.

Las tecnologías convergentes, internet, la inteligencia artificial, la memoria externa….serán básicas en los próximos tiempos y no ya como tendencias, si no como elementos básicos que trascenderán mucho más de lo que la mayoría de la gente piensa, llegará el momento que ellas condicionarán nuestros actos, como ya lo están haciendo en parte ahora: “trate usted de sacar un billete de avión que no sea por medio de internet” Juan Domingo Farnos

Girar suavemente la noción de competencia”: la distinción entre las habilidades (elemental para realizar operaciones), contenido (será en lo que se ejercita la capacidad) y la novedad en comparación con el punto anterior, el contexto (las condiciones en que practicamos las operaciones y toma significado producciones).

El plan respaldado por capacidades y contenido crece y se materializa en un volumen tridimensional que la tercera dimensión es el contexto (una figura más tarde ayudará a imaginar que estas tres dimensiones).

¿Puede el campo de la investigación educativa científico social explicar cómo sus preocupaciones principales escaparon del aula y entraron en el laboratorio de programación y, recursivamente, cómo las “máquinas de aprendizaje” técnicas están reingresando a las aulas y otros entornos de aprendizaje digitalizados?

Los procesos de aprendizaje automático no humano, y sus efectos en el mundo, deberían ser objeto de escrutinio si se quiere que el campo de la investigación educativa tenga voz para intervenir en la revolución de los datos. Si bien la investigación educativa desde diferentes perspectivas disciplinarias ha luchado durante mucho tiempo sobre las formas en que el “aprendizaje” se conceptualiza y entiende como un proceso humano, también debemos comprender mejor el aprendizaje no humano que ocurre en las máquinas. Esto es especialmente importante ya que las máquinas que se diseñaron para aprender desempeñan un papel de “pedagogía pública” en las sociedades contemporáneas y también se están impulsando en los esfuerzos comerciales y políticos para reformar los sistemas educativos a gran escala.

Una de las grandes historias de tecnología de los últimos meses se refiere a DeepMind, la empresa de inteligencia artificial propiedad de Google, pionera en el aprendizaje automático de próxima generación y las técnicas de aprendizaje profundo. El aprendizaje automático a menudo se divide en dos categorías. El ‘aprendizaje supervisado’ implica que los algoritmos sean ‘entrenados’ en un conjunto de datos seleccionado para detectar patrones en otros datos encontrados posteriormente ‘en la naturaleza’. El aprendizaje no supervisado, por el contrario, se refiere a sistemas que pueden aprender desde cero mediante la inmersión. en datos.

Crear máquinas inteligentes o más inteligentes que los humanos, no es lo mismo que hacer a los humanos más inteligentes. Cada nivel de complejidad implica un tipo de conocimiento emergente nuevo y más poderoso, en el que todos los procesos cognitivos están aumentados. El último paso, es decir, aquel hacia el cual tendemos, sería el conocimiento algorítmico.

Y esa propuesta es la que hacemos nosotros (JUAN DOMINGO FARNOS https://juandomingofarnos.wordpress.com/…/algoritmos…/

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalizacion, como nunca hasta ahora se jha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

Junto con la arquitectura de redes neuronales, un algoritmo de aprendizaje de refuerzo autodirigido de última generación es la innovación técnica que se entrena únicamente mediante el aprendizaje de refuerzo de autoaprendizaje, comenzando con el juego aleatorio, sin supervisión ni uso de datos humanos. ‘como su equipo de ciencia lo describió en la Naturaleza. Sus ‘sistemas de aprendizaje de refuerzo están entrenados a partir de su propia experiencia, en principio permitiéndoles exceder las capacidades humanas y operar en dominios donde falta la experiencia humana’. A medida que el algoritmo de refuerzo procesa sus propias experiencias en el juego, es ‘recompensado’ y ‘reforzado’ por las victorias que logra, para ‘entrenar a un nivel sobrehumano’.

Otro beneficio de la personalización es que cada vez que se personaliza, a aprender y almacenar un poco más sobre el conjunto único de un alumno, se aportan posiciones diferenciadas al aprendizaje social.

Esto no solo permite llegar a un mejor AUTOAPRENDIZAJE, si no también una manera más de “emprendimiento” y “apropiación” de la red, como “espacio” claramente de aprendizaje personalizado y socializador.

Esta “vinculación” que se establece, es propia incluso del funcionamiento cerebral, como muy bien dice George Siemens y diría mi amigo argentina Alicia Banuelos (una maravillosa Física)…”la sinapsis neuroal provoca que las neuronas se vinculen, se relacionen unas con otras”.

El cerebro emite una especie de corriente de “relación” que con un poco de entrenamiento, que lo tengo y mucho, tengo que establecer relaciones entre todos e incluirlos, si es necesario en mis ideas para mejorarlas…

En una base de datos tradicional, el esquema de una tabla se aplica en tiempo de carga de datos. Si los datos que se están cargando no se ajusta al esquema, a continuación, se rechaza. Este diseño es a veces llamado esquema de escritura ya que los datos se comprueban con el esquema cuando se escribe en la base de datos y eso se puede extrapolar a lo que pretendemos que los alumnos aprendan del curriculum preestablecido.

Normalmente por otra parte, no comprobamos los datos cuando se cargan ,cuando los comentamos, explicamos… sino más bien cuando se emite una consulta. Esto se conoce como esquema de lectura.

Hay ventajas y desventajas entre los dos enfoques. Esquema de lectura hace que tengamos una carga inicial muy rápida, ya que los datos no tienes que ser leídos, analizados y serializados en el disco en formato interno de la base de datos.

La operación de carga es sólo una copia de archivo o de movimiento, y es lo que hacemos con los aprendizajes mecánicos de lectura y escritura (totalmente nefastos) es mucho más flexible: : considerar la posibilidad de dos o más esquemas para los mismos datos subyacentes, dependiendo del análisis que se realiza y de la persona que tenga que hacerlo (personalización en los procesos de aprendizaje).

Aparecen una incontenible avalancha de datos por segundo, las tecnologías se hacen cada vez más intangibles y ubicuas. Con la COMPUTACIÓN UBÍCUA, la asincronía funde el“ahora” y el “cuando”; SE TRANSFORMA en cognitiva-mente integrada, están surgiendo nuevas formas de pensar en las quela cognición se complementa con el pc, tabletas, mobile learning…

Mediante el manejo de tecnologías semánticas: etiquetados generados por los usuarios,folksonomías y ontologías; es intuitiva, como cualquier hábito, la computación ubicua se presenta como una parte de la experiencia vital…. niveles de complejidad, constante redefinición de los centros y las periferias y nos permite pasar de la misma Computación Ubícua a la I-BICUIDADuna nueva manera más SINCRONA de actuar en tiempo real, disponiendo en todo momento de las mejores FUENTES posibles…

Obviamente nosotros vamos mucho más lejos y ante no solo la abalancha de datos que nos llegan, ya que de lo que hablamos, primero, es de otro paradigma, con lo que las “formas actuales” de aprendizaje en nada se parecen a las que proponemos nosotros englobadas dentro de paraguas de la sociedad, contrariamente a lo que sucede ahora en la que la educación permanece como “una parte aislada” dentro de ella.

Ya no queremos algoritmos que saquen patrones y que todos tengamos que seguir sus indicaciones, estamos por algoritmos tanto de lo que son las personas como de lo que necesitan “Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a ser algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”

La implicación, en otras palabras, es que poderosos algoritmos de aprendizaje podrían ser puestos a la tarea de entrenar a mejores humanos, o incluso de superar a los humanos para resolver problemas del mundo real.

“Es cierto que los sistemas cognitivos son máquinas inspiradas por el cerebro humano”, ha argumentado en un artículo reciente el vicepresidente de investigaciones y soluciones “Pero también es cierto que estas máquinas inspirarán el cerebro humano, aumentarán nuestra capacidad de razonar y reconectarán las formas en que aprendemos”.

Todos ellos e basan en teorías científicas de aprendizaje -comportamiento psicológico y neurociencia cognitiva- que se utilizan para crear sistemas algorítmicos “sobrehumanos” de aprendizaje y creación de conocimiento. Traducen las teorías subyacentes de la psicología conductista y la neurociencia cognitiva en códigos y algoritmos que pueden ser entrenados, reforzados y recompensados, e incluso convertirse en máquinas autorreforzadoras auodidácticas que pueden exceder la experiencia humana.

Para educadores e investigadores de la educación esto debería plantear preguntas apremiantes. En particular, nos desafía a reconsiderar qué tan bien somos capaces de comprender los procesos que normalmente se consideran parte de nuestro dominio, ya que ahora están siendo refigurados computacionalmente. ¿Qué significa hablar sobre las teorías del aprendizaje cuando el aprendizaje en cuestión tiene lugar en algoritmos de redes neuronales?

El “conductismo de máquina” del tipo desarrollado en DeepMind puede ser una de las teorías de aprendizaje más importantes de la actualidad. Pero debido a que los procesos que explica ocurren en las computadoras en lugar de en los humanos, la investigación educativa tiene poco que decir al respecto o sus implicaciones.

Los desarrollos en el aprendizaje automático, los algoritmos autodidacticos y los procesos de autorrefuerzo pueden ampliar el alcance de los estudios educativos. La ciencia cognitiva y la neurociencia ya adoptan métodos computacionales para comprender los procesos de aprendizaje, de maneras que a veces parecen reducir la mente humana a procesos algorítmicos y el cerebro al software. Los ingenieros de IBM para la informática cognitiva en la educación, por ejemplo, creen que sus desarrollos técnicos inspirarán nuevas comprensiones de la cognición humana.

Será esencial un enfoque científico social de estas teorías computacionales del aprendizaje, ya que buscamos comprender mejor cómo una población de sistemas no humanos está siendo capacitada para aprender de la experiencia y, de ese modo, aprender a interactuar con los procesos de aprendizaje humano. En este sentido, los modelos de aprendizaje que están codificados en sistemas de aprendizaje automático pueden tener consecuencias sociales significativas. Necesitan ser examinados tan de cerca como los estudios sociológicos previos han examinado la experiencia de las “ciencias psicológicas” en las expresiones contemporáneas de autoridad y gestión sobre los seres humanos.

Las implicaciones sociales del aprendizaje automático se pueden abordar de dos maneras que requieren un examen educativo adicional. El primero se refiere a cómo la psicología del comportamiento se ha convertido en una fuente de inspiración para los diseñadores de plataformas de redes sociales, y cómo las plataformas de medios sociales están asumiendo un rol pedagógico distintivo.

La mayoría de las plataformas modernas de medios sociales se basan en la ciencia del cambio de comportamiento o en variantes relacionadas de la economía del comportamiento. Utilizan datos exhaustivos sobre los usuarios para generar recomendaciones y sugerencias que pueden dar forma a las experiencias posteriores de los usuarios. Los procesos de aprendizaje automático se utilizan para extraer datos de usuarios sobre patrones de comportamiento, preferencias y sentimientos, comparar esos datos y resultados con vastas bases de datos de actividades de otros usuarios, y luego filtrar, recomendar o sugerir lo que el usuario ve o experimenta en la plataforma.

Desde luego, los procesos de análisis de datos basados en el aprendizaje automático se vuelven controvertidos tras las noticias sobre perfiles psicológicos y microtargeting a través de las redes sociales durante las elecciones, descritas como “manipulación de la opinión pública” y “propaganda computacional”. El campo de la educación debe participar este debate porque el aprendizaje automático llevado a cabo en las redes sociales desempeña el papel de una especie de “pedagogía pública”, es decir, las lecciones aprendidas fuera de las instituciones educativas formales por cultura popular, instituciones informales, espacios públicos, discursos culturales dominantes, y tanto el medios tradicionales y sociales.

Sin embargo, las pedagogías públicas de las redes sociales son importantes no solo porque están guiadas por el aprendizaje automático. También están profundamente informados por la psicología, y específicamente por la psicología conductual. Las ciencias psicológicas del comportamiento están hoy profundamente involucradas en la definición de la naturaleza de los comportamientos humanos a través de sus explicaciones disciplinarias, y en informar las aspiraciones comerciales y gubernamentales estratégicas.

En Neuroliberalismo de Mark Whitehead y sus coautores sugieren que el software de big data se considera una ‘edad de oro’ para la ciencia del comportamiento, ya que los datos se usarán no solo para reflejar el comportamiento del usuario sino también para determinarlo. En el núcleo de las redes sociales y la conexión de la ciencia del comportamiento están las ideas psicológicas de que la atención de las personas puede “engancharse” a través de simples trucos psicológicos, y que sus comportamientos posteriores y hábitos persistentes pueden ser “activados” a través de la “informática persuasiva” y el comportamiento diseño.’

Después del post “Paradigmas educativos ….Hemos realizado este trabajo con el objetivo de conocer sobre los paradigmas de la investigación educativa como son el positivismo, interpretativo, sociocrítico sus métodos y técnicas, conceptos y principios que son herramientas que nos ayudará para el presente y futuro como docentes y estudiantes.

forzosamente relacionada con lo que se desarrolla en todas aquellas ciencias y disciplinas en las que se fundamenta, por ello su evolución ha seguido los mismos caminos que la investigación didáctica en general y también ha contemplado la polémica entre los paradigmas positivistas, imperativos socio críticos…

Desde la perspectiva cualitativa la investigación educativa pretende la interpretación de los fenómenos, admitiendo desde su planteamiento fenomenológico que admite diversas

interpretaciones. Muchas veces hay una interrelación entre el investigador y los objetos de investigación, pero las observaciones y mediciones que se realiza se consideran válidas mientras constituyan representaciones auténticas de alguna realidad. Tener paradigmas y pensar que cada uno corresponda a un concepción de construcción de conocimientos, una imitante impuesta por una realidad extrapolada desde un conocimiento acumulado que no llega a una profundidad que subraye en lo visible la realidad, cada uno de los paradigmas guarda su sentido pero a la vez, uno tiene razón de ser función del otro. Términos de paradigmas se puede encontrar hoy en cientos textos científicos, en artículos de los más variados contextos, por lo general su empleo viene del sentido que se ha generalizado a partir de la obra de Kuhn.

“La estructura de las revoluciones científicas”. No existe aún una primera teoría unificadora de la educación que nos permita analizar y solucionar la globabilidad y la complejidad de los problemas de la educación. Peor los problemas existen y es posible asumir una de dos posiciones

Esta trilogía paradigmática, conformada por el paradigma cientificista, el paradigma hermético y el paradigma crítico han originado una ruptura epistemológica con un subsecuente proliferación de diferentes estudios, enfoques, teorías y prácticas dentro de la esfera de la investigación educativa, tratando de legitimar desde cada uno de estos paradigmas una propuesta emergente que sirva de fundamento para orientar la acción educativa y el proceso de enseñanza-aprendizaje.

Si en el primer post hablamos de paradigmas, ahora lo haremos de “investigación“…Mientras que la etnografía general se basa en datos cualitativos, no quiere decir que los enfoques cuantitativos no deben ser empleados en el proceso de investigación. La combinación de los dos cables a un “enfoque de métodos mixtos”, que puede adoptar diversas formas: la recolección y análisis de datos pueden ser separados o dirigirse juntos, y cada uno de ellos se pueden utilizar en el servicio de la otra. Por supuesto, esto no es nuevo en los círculos académicos y la etnografía corporativa, pero parece que hay un renovado interés últimamente en este tema, ya que sin duda alguna los aspectos INFORMALES, están superando los formales.

Uno de los impulsores de este renovado interés es la enorme cantidad de información generada por las personas, las cosas, el espacio y sus interacciones – lo que algunos han llamado ” Big Data “: Los grandes conjuntos de datos creados por la actividad de las personas en los dispositivos digitales de hecho ha dado lugar a un aumento de las “huellas” de aplicaciones para teléfonos inteligentes, programas de ordenador y sensores ambientales (INTELIGENCIA ARTIFICIAL) Dicha información se espera actualmente para transformar la forma en que estudiamos el comportamiento y la cultura humana, con, como de costumbre, las esperanzas utópicas, distópicas y miedos …, llegando a entender estos datos como METADATOS….

Encontramos términos que admiten conceptos con los que muchos estaríamos de acuerdo : Etno-minería, como su nombre indica, combina técnicas de la etnografía y la minería de datos. En concreto, la integración de técnicas de minería de datos etnográficos y de etno-minera incluye una mezcla de sus puntos de vista (en lo interpretaciones son válidas e interesantes, y cómo deben ser caracterizados) y sus procesos (lo que selecciones y transformaciones se aplican a los datos para encontrar y validar las interpretaciones).

Por medio de estas investigaciones, esta integración tiene por objeto poner de relieve nuevas formas de entender y potencialmente inspirar el diseño de la investigación la interacción persona-ordenador… 

La misma librería JMSL incluye tecnología de redes neuronales que complementa las ya existentes funciones de minería de datos, modelado y predicción, disponibles en toda la familia de productos IMSL. Las clases para la predicción basada en redes neuronales ofrecen un extraordinario potencial , gracias a su capacidad de crear modelos predictivos a partir de datos históricos y de “aprender” para optimizar el modelo a medida que se obtiene más información, lo podríamos llamar “RETROALIMENTACIÓN CONTINUADA Y MULTICANAL”

Los diseñadores de medios sociales de Silicon Valley saben cómo moldear el comportamiento a través del diseño técnico ya que, según Jacob Weisberg, “las disciplinas que lo preparan para esa carrera son la arquitectura de software, la psicología aplicada y la economía del comportamiento, utilizando lo que sabemos sobre las vulnerabilidades humanas para “Weisberg destaca cuántos de los ingenieros de Silicon Valley son graduados del Laboratorio de Computación Persuasiva de la Universidad de Stanford, que utiliza ‘métodos de psicología experimental para demostrar que las computadoras pueden cambiar los pensamientos y comportamientos de las personas de maneras predecibles’.

Las recompensas conductuales -o el aprendizaje reforzado- son importantes en el campo de la informática persuasiva, ya que obligan a las personas a seguir volviendo a la plataforma. Al hacerlo, generan más datos sobre ellos mismos, sus preferencias y comportamientos, que luego pueden procesarse para que la experiencia de la plataforma sea más gratificante. Estas técnicas son, a su vez, interesantes para los científicos que cambian el comportamiento y los que formulan las políticas, ya que ofrecen formas de desencadenar ciertos comportamientos o “empujar” a las personas a tomar decisiones dentro de la “arquitectura de elección” que ofrece el entorno.

Karen Yeung describe la aplicación de datos psicológicos sobre las personas para predecir, orientar y cambiar sus emociones y comportamientos como hiperimpulso. Las técnicas de hiperimpulso utilizan técnicas de computación persuasivas para enganchar a los usuarios y de la ciencia del cambio de comportamiento para desencadenar acciones particulares y respuestas.

“Estas técnicas se utilizan para dar forma al contexto de elección de información en el que se produce la toma de decisiones individuales”, argumenta Yeung, “con el objetivo de canalizar la atención y la toma de decisiones en las direcciones preferidas por el” arquitecto de elección “.

A través del diseño de estrategias de empuje psicológico, las organizaciones de medios digitales están comenzando a jugar un papel poderoso en la configuración y el gobierno de comportamientos y sentimientos.

Algunos ingenieros de Silicon Valley han empezado a preocuparse por las consecuencias psicológicas y neurológicas negativas de los “trucos psicológicos” de los medios sociales en la atención y la cognición de las personas. Silicon Valley se ha convertido en un “imperio global de modificación del comportamiento”, afirma Jaron Lanier. Del mismo modo, a los críticos de AI les preocupa que los algoritmos cada vez más sofisticados inciten y engatusen a las personas para que actúen de la forma que hayan considerado más apropiada -o óptimamente gratificante- por sus algoritmos subyacentes, con importantes implicaciones sociales potenciales.

Lo que sustenta todo esto es una visión conductista particular del aprendizaje que sostiene que las conductas de las personas pueden ser manipuladas y condicionadas a través del diseño de arquitecturas digitales. Audrey Watters ha sugerido que el conductismo ya está resurgiendo en el campo de la tecnología digital, a través de aplicaciones y plataformas que enfatizan el “refuerzo automático continuo” de los “comportamientos correctos” definidos por los ingenieros de software. Tanto en las pedagogías públicas de las redes sociales como en las pedagogías del aula con tecnología mejorada, se está poniendo en práctica un reinicio digital de la teoría del aprendizaje conductista.

Los impulsos conductuales a través del aprendizaje automático algorítmico se están convirtiendo en parte integral de las pedagogías de hipernubo público de las redes sociales. Es parte de la arquitectura instruccional del entorno digital que las personas habitan en su vida cotidiana, buscando constantemente enganchar, desencadenar y empujar a las personas hacia rutinas particulares persistentes y condicionar hábitos de conducta “correctos” que han sido definidos por los diseñadores de plataforma como preferibles en de alguna manera. La investigación educativa debe comprometerse estrechamente con las pedagogías públicas de hipernubración que se producen cuando las ciencias del comportamiento se combinan con el conductismo del aprendizaje automático algorítmico, y observa más de cerca las teorías subyacentes del conocimiento conductual en las que se basan y las conductas que están diseñadas para condicionar .

El segundo gran conjunto de implicaciones del aprendizaje automático se relaciona con la adopción de tecnologías basadas en datos dentro de la educación específicamente. Aunque el concepto de ‘aprendizaje personalizado’ tiene muchas caras diferentes, su encuadre contemporáneo dominante es a través de la lógica del análisis de big data. El aprendizaje personalizado se ha convertido en una poderosa idea para el sector de la tecnología ed, que es cada vez más influyente en la visión de la reforma educativa a gran escala a través de sus plataformas adaptativas.

Las plataformas de aprendizaje personalizadas generalmente consisten en una combinación de minería de datos, análisis de aprendizaje y software adaptativo. Los datos de los estudiantes son recopilados por dichos sistemas, luego se comparan con un modelo ideal de rendimiento estudiantil, para generar predicciones de posibles avances y resultados futuros, o se adaptan de manera receptiva para satisfacer las necesidades individuales de los estudiantes según lo considere apropiado el análisis.

En resumen, el aprendizaje personalizado depende de que los algoritmos autodidacticos de aprendizaje automático se pongan a trabajar para extraer, extraer y procesar los datos de los estudiantes de forma automatizada.

El discurso que rodea el aprendizaje personalizado lo enmarca como un nuevo modo de educación “progresiva”, con ecos conscientes de las pedagogías centradas en el alumno de John Dewey y los modelos asociados de aprendizaje basado en proyectos, experienciales y basados en la investigación. El trabajo de Dewey ha demostrado ser una de las teorías filosóficas más influyentes y duraderas en la educación, a menudo utilizado en conjunto con relatos más abiertamente psicológicos del rol que juega la experiencia en el aprendizaje.

Con su combinación de análisis de big data y aprendizaje automático con progresivismo, podríamos llamar a la teoría del aprendizaje detrás de la personalización ‘Big Dewey’.

Entramos en una época de fronteras porosas entre la inteligencia humana y la inteligencia artificial (con razón llamamos “inteligencia artificial”). Necesitamos una prueba de Turing para decidir si una entidad es humano o no. Si solicitamos algo en línea, como comprar, aprender, un billete de avion…es posible que tengamos que demostrar, que no somos un BOT, una máquina. Y, cuando se trata del desafío que enfrenta la educación – la forma de proporcionar una educación de calidad para un gran número de estudiantes a un costo reducido – la tentación de cruzar la frontera hombre-máquina y dejar que las máquinas (es decir, algoritmos) hagan el trabajo pesado es casi irresistible, es más, ya no es una tentación, realmente es una necesidad.

Las máquinas, las TIC, la internet… proporcionan información más rápido de lo que nadie podría haber imaginado, pero el aprendizaje es dar sentido a la información y el descubrimiento de su significado, el verdadero objetivo de la educación, y con las máquinas aun no lo hemos conseguido, aunque algunos estemos en ello..

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

Los alumnos pueden aprender métodos y enfoques de los tutores en línea para luego ayudarles a lo largo de su propio camino de aprendizaje. Sus propios itinerarios de aprendizaje. Ese es el punto: los estudiantes adultos (es decir los estudiantes en edad universitaria) aprenden mejor cuando ellos mismos crean rutas de aprendizaje; el tutor en línea puede proporcionar ayuda, pero no puede ser la totalidad de la experiencia de aprendizaje.

Las tecnologías de aprendizaje adaptativas, análisis de aprendizaje en línea que se utilizan para crear rutas de aprendizaje para los alumnos en función de su rendimiento, pueden ayudar a algunos estudiantes, pero no pueden, en muchos casos, proporcionar la oportunidad para el conocimiento profundo y duradero sobre cómo aprender.

La máquina, en las tecnologías de aprendizaje adaptativo, se ha hecho cargo: el algoritmo es la creación de itinerarios de aprendizaje, y no lo que haga el alumno. Este enfoque podría entenderse como un intento de “aprendizaje semi-pasivo.” Esto no quiere decir que no haya usos de las tecnologías de aprendizaje adaptativo, pero es que decir que este enfoque sólo puede ser un elemento de un camino de aprendizaje humano impulsado .

Sólo un ser humano realmente puede personalizar todo lo que él o ella lo hace. Es la era de la personalización, pero eso sólo significa ayudar a cada uno de nosotros para pasar menos tiempo en los detalles y más tiempo en las actividades humanas importantes, como la imaginación, la creatividad, el descubrimiento, la integración, la intuición, ..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

El mismo Pierson dice “Las evaluaciones se incrustan en las actividades de contenido y aprendizaje por lo que la instrucción y el aprendizaje no tiene que ser interrumpidos para determinar las áreas de progreso y desafío continuo. Mientras tanto, los algoritmos y las progresiones de aprendizaje integrados en el sistema van a ajustar en respuesta a las actividades de aprendizaje relacionadas del estudiante para permanecer en sintonía con sus ecosistemas de aprendizaje. Esta información también se proporciona al educador con opciones y recursos adicionales en tiempo real ya que el educador puede utilizarlo para apoyar al estudiante y su aprendizaje”

Como esta nueva tecnología comienza a tomar forma el diseño de otra sociedad ya que SUS MIMBRES son completamente nuevos a no como herramientas, metodologías…(innovacioned), sino un cambio “radical” en la concepción de la misma sociedad.

Algunos pensaran que en parte estamos en el APRENDIZAJE ADAPTATIVO, ya que nos basmos en los DATOS, pues no, lo hacemos así como una IDEA COMPLETAMENTE NUEVA, es decir, utilizamos DATOS, si, pero dentro del proceso personalizado de aprendizaje, por lo tanto se trata de algo completamente diferente.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo alumnos o cursos completado.

Es nuestra responsabilidad en esta sociedad….

     a-Aplicar las técnicas de minería de datos, aprendizaje automático y reconocimiento de patrones para los conjuntos de datos estructurados y no estructurados.

     b-Diseño, desarrollo y prueba de algoritmos de aprendizaje y modelos de datos sobre el comportamiento humano para construir instrumentos de evaluación cognitiv   

      c-Construir algoritmos personalizados para un motor de recomendación vía de desarrollo

      d-Los modelos de diseño para el desarrollo de aplicaciones nuevo jueg

      e-Contribuir a la mejora de nuestros algoritmos.

Tambien nos podemos hacer una serie de preguntas que no vamos a obviar….y que nos ayudaran a entender mejor el por qué de las cosas…

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?

¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?

¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

Estos sistemas pueden aprender, pero no son las mismas formas de aprendizaje conocidas por la mayoría de los investigadores en educación. A medida que avanza la innovación técnica, más y más aprendizaje va a suceder dentro de las computadoras. Así como los educadores esperan cultivar las mentes jóvenes para que se conviertan en aprendices independientes de por vida, el sector tecnológico está impulsando los procesos de aprendizaje para crear agentes de aprendizaje automático no humanos cada vez más automatizados para compartir el mundo con los humanos. ¿Qué quiere decir que los investigadores educativos no deberían buscar desarrollar su experiencia en la comprensión del aprendizaje automático no humano?

Las teorías del aprendizaje no humano también son cada vez más influyentes, ya que los procesos de aprendizaje automático sustentan tanto las pedagogías de hipernubo público de las redes sociales como las plataformas de aprendizaje personalizadas que he delineado. Las nuevas pedagogías conductistas públicas de hipernudios, inspiradas tanto por la ciencia conductual como por el diseño conductual, están ocurriendo a gran escala entre diferentes públicos, a menudo de acuerdo con objetivos políticos y comerciales, pero la investigación educativa es extrañamente silenciosa en esta área.

Aunque mucho se ha escrito sobre big data y personalización, también debemos explorar cómo la filosofía del sector tecnológico podría afectar e influir en las escuelas, los docentes y los estudiantes a medida que las plataformas de aprendizaje adaptativo escapan del laboratorio de pruebas beta y comienzan a colonizar la educación estatal. Los estudios futuros de aprendizaje personalizado podrían examinar las formas de aprendizaje automático de máquina que se produce en la computadora, así como los efectos educativos y los resultados producidos en el aula.

En la educación – especialmente en la tecnología de mejora de la educación – se nota el final de una época y el principio de otra, la propia OBSOLESCENCIA nos lo indica, lo que es más difícil de ver en la vida cotidiana de los espacios cerrados y obligatorios educativos..

Los asesores de educación y altavoces normalmente nos preguntamos “si un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”. Obviamente, esta es una afirmación absurda (incluso si pasamos por alto los retos de viajes en el tiempo). Los asesores de educación y algunos “voceros” normalmente declaran “si, un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”.

Por tanto pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”

Hay muchas maneras de personalizar el aprendizaje. Sin embargo, al igual que los términos de estilos y la motivación del aprendizaje, la personalización es otro término mal definido. Para ser más específicos, se describe la personalización aquí con cinco niveles con creciente sofistificación, cada nivel que describe una estrategia de personalización específica. Desde los más simples a las más complejas, las cinco estrategias son:

(a) nombre reconocido;

(B) describe a sí mismo;

(C) segmentados;

(D) cognitivo-basada; y

(e) de base integral de la persona.

A lo mejor el “sueño de algunos de una educación autónoma y libre (solo realizable mediado con la con la Machine learning, AI, internet, TIC), no es tal sueño y es una realidad.

Con todo ello la personalización por las tecnologías digitales (algoritmos) sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y es aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

En los últimos tiempos se están dando los corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendrá vigilados permanentemente.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metáfora de los presos alrededor que se pusieron alrededor de una torre de vigilancia para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)…., lo que nos conducirá a la resolución de problemas, entre otras cosas.

Para ello utilizaremos el pensamiento computacional como un concepto de resolución de problemas. Es un pensamiento especial que nos permite comprender un problema complejo y desarrollar posibles soluciones. Soluciones que pueden presentarse de forma que un ser humano, una computadora o ambos puedan entender. Pero el pensamiento computacional se puede describir desde una comprensión muy estrecha o muy amplia.

Si parece que el tener presente como base la creación de patrones para resolver problemas, no es menos cierto que la variedad de tareas y actividades actualizadas proporciona al estudiante la flexibilidad de elegir y repetir las tareas para aprender las técnicas a su propio ritmo. Esto le permite al alumno tener el control de todo el proceso de aprendizaje, es por este proceso estandarizado normalmente se vicia y conduce a una exclusión, por lo que necesitamos algoritmos asistidos como garantía de elección, diversidad y por tanto, inclusión

Pero …

¿En qué parte de este proceso hay una oportunidad de mirar realmente fuera de nuestras paredes y ver qué está sucediendo en el mundo? Nuestras urgentes necesidades de aprendizaje no solo están ligadas a los datos finales sobre las prioridades de aprendizaje del pasado. A medida que el mundo cambia a un ritmo exponencial, ¿Quién está determinando lo que nuestros estudiantes necesitarán para prosperar en ese mundo?

“Estar dispuestos a interrumpir constantemente nuestra mentalidad individual y colectiva, si queremos llegar a un acuerdo con las interrupciones necesarias que deben ocurrir en nuestras propias organizaciones si realmente queremos librarnos del pensamiento de status quo que a menudo nos entierra en las prácticas del pasado.

Ver cómo las ‘próximas’ prácticas también necesitan las ‘próximas’ métricas si queremos pivotar de manera efectiva hacia este futuro emergente y más deseable que visualizamos para nosotros y nuestras organizaciones “.

Las necesidades urgentes de aprendizaje de los estudiantes son personales. Cada niño, cada adulto en el sistema tiene necesidades personalizadas que no pueden ser determinadas por el pensamiento estandarizado.

“No solo serán las personas las que tendrán que convertirse en aprendices adaptables, permanecer ágiles en nuestro mundo exponencialmente cambiante en el que vivimos ahora … también lo deben hacer nuestras organizaciones educativas si quieren seguir siendo centros importantes, dinámicos y relevantes de aprendizaje, innovación y transformación frente a estos cambios y cambios sístémicos “ ..,.

juandon